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ABSTRACT 
A two-dimensional laser surface remelting problem is numerically simulated. The mathematical formulation 
of this multiphase problem is obtained using a continuum model, constructed from classical mixture theory. 
This formulation permits the construction of a set of continuum conservation equations for pure or binary, 
solid-liquid phase change systems. The numerical resolution of this set of coupled partial differential 
equations is performed using a finite volume method associated with a PISO algorithm. The numerical 
results show the modifications caused by an increase of the free surface shear stress (represented by the 
Reynolds number Re) upon the stability of the thermocapillary flow in the melting pool. The solutions 
exhibit a symmetry-breaking flow transition, oscillatory behaviour at higher values of Re. Spectral analysis 
of temperature and velocity signals for particular points situated in the melted pool, show that these 
oscillations are at first mono-periodic then new frequencies appear generating a quasi-periodic behaviour. 
These oscillations of the flow in the melted pool could induce the deformation of the free surface which 
in turn could explain the formation of surface ripples observed during laser surface treatments (surface 
remelting, cladding) or laser welding. 

KEY WORDS Oscillatory flow Convection Melted pool Multiphase 

INTRODUCTION 
The engineering applications of high power lasers has appreciably increased during the past 
decade. The main reason for this development is the potential for this tool to deposit a high 
energy density with high precision and therefore to perform accurate and very localized 
operations1. The most developed applications of high power lasers involve cutting and drilling 
where the beam energy is used to vaporize a small piece of material. Another application 
involves laser welding where both melting and vaporization phenomenon are involved. In this 
case the advantage of the laser is the possibility to operate in a normal atmosphere which is 
not the case for other techniques such as electron beam welding. Nevertheless, the development 
of industrial applications of high power lasers is actually limited when the process induces a 
melting in a portion of the material. This is caused by the lack of understanding of the physical 
mechanisms, particularly the hydrodynamic effects which are present in the melted pool. For 
example, during thermal surface treatments such as surface remelting, cladding and alloying, the 
convective motions which develop in the melted pool are very important and affect significantly 
the heat transfer and the phase change. These convective motions result from the surface tension 
gradient produced by the free surface temperature distribution. For particular conditions the 
free surface can undergo large deformations which may persist after resolidification creating a 
surface rippling state2. The development of oscillatory flow regimes is also an instability factor 
for the free surface. 

In this paper we present a numerical study of the various flow regimes which could appear 
in a two-dimensional melted pool model (see Figure 1). The free surface shear stress condition 
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appears to be the most important factor which controls the development of these hydrodynamical 
instabilities. This physical parameter is represented by a Reynolds number constructed from a 
thermocapillary velocity scale and the laser beam diameter 

MATHEMATICAL FORMULATION 
The mathematical model is constructed from a continuum formulation3,4, based on the integration 
of semiempirical laws and microscopic descriptions of transport behaviour with principles of 
classical mixture theory. This formulation permits the treatment of various solidification problems 
involving pure and alloy materials, without the need of imposing boundary conditions at the 
melting front. Therefore, the problem can be solved with a fixed cartesian mesh, reducing the 
computation time5,6. The mathematical model is based on the following assumptions: 

• The flow of the molten material is laminar and quasi incompressible (Boussinesq 
approximation). 

• The specific heat is constant inside each phase (these values can be different however in the 
liquid and in the solid phase). 

• The friction forces between the liquid and the solid phase are modelled by a Darcian term 
which is usually used for incompressible flow in porous media. 

• The surface of the target is flat (this is also true for the free surface) and adiabatic outside 
the interaction zone limited by the laser beam diameter. 

Using these assumptions, the present problem can be mathematically defined by the following 
continuity, momentum and energy equations7, 

The boundary conditions associated with this problem are, 
• West, south and east boundaries: 



OSCILLATORY FLOW CONVECTION IN A MELTED POOL 15 

• North boundary (free surface) 

The different variables introduced in the previous equations are, 
• pΦ, cΦ, kΦ density, specific heat and conductivity in the solid (Φ = s) and in the liquid phase 

(Φ = 1) 
• gi, β gravitational acceleration and thermal coefficient of expansion 
• hΦ, vΦ

i enthalpy and velocity components in the solid and liquid phases 
• p, K, μ pressure, permeability and kinetic viscosity 
• gs, fs volume and mass fraction of the solid phase 
• σ, hf surface tension and latent heat of fusion, 
• T0 and Tf ambient and melt temperatures 
• Τ and n tangential and normal directions at the free surface 

The mixture density, velocity, enthalpy and thermal conductivity are, respectively, 

P = gsps+(1-gs)pl (7) 
vj = (1-fs)vl

j (8) 
h=fshs+(1-fs)hl (9) 
k=gsks+(1-gs)kl (10) 

The enthalpy of the solid and liquid phases are, 
hs = csT (11) 
hl = clT+[(cs-cl)Tf+hf] (12) 

The permeability appearing in the momentum equations is assumed to vary with the liquid 
volume fraction according to the Carman-Kozeny equation, 

where the constant K0 depends upon the specific structure of the multiphase region. 
Numerical solution of the system is performed using a finite volume method, with an implicit 

Euler scheme for the time discretization and a power law scheme for the evaluation of the 
interface flux between two neighbouring control volumes8,9. 

The coupling between the pressure and the velocity field is solved with a non-iterative PISO 
algorithm10,11. These different numerical integrations applied for each transport equation which 
constitutes the physical problem, lead to the final set discretization equations which can be 
written in a generalized form: 

where the subscript nb denotes the neighbour grid points of the point P situated at the centre 
of each computing cell. The linearized equations are then solved using a tridiagonal matrix 
algorithm (TDMA)8. 

The computational procedure is similar to that described in Reference 9. At the beginning of 
the problem, the temperature field is evaluated as if it was that of a pure conductive problem 



16 D. MORVAN AND PH. BOURNOT 

(convective motions are neglected), then the complete problem is solved iteratively for each time 
step until the following convergence criteria is met, 

The target dimensions are fixed at 10 x d (d: beam diameter) in the width direction and 5 x d 
in depth. The aim of the present study is the numerical prediction of unsteady heat and fluid 
flow in melted pool heated with a steady laser beam. The observation of such hydrodynamical 
instabilities is necessary associated with asymmetric flow patterns (this phenomena is comparable 
with the development of a Karman vortex street for a flow around a cylinder). To limit the 
numerical diffusivity introduced by the power law scheme, a relatively fine grid (126 x 100) is 
used with refinement of the mesh near the laser-matter interaction zone where higher temperature 
gradient and shear stress are observed. This precision is necessary to represent correctly the 
position of the melt front which is not known at the beginning of the resolution. The calculations 
are performed with a reduced time step fixed at 0.1. For each solution we have verified that the 
numerical parameters (grid scales, time step) do not affect the dynamic of the heat and the fluid 
flow. The governing equations (1-3) are nondimensionalized using the following reference scales, 

• length: beam diameter d 
• temperature: AT=Tf—T0 
• density, specific heat and conductivity: pl cs and kl 
• velocity: 

• enthalpy: cs(Tf-T0) 
The dimensionless variables are, 

Introducing these dimensionless variables, the governing equations and side conditions of the 
problem is as follows, 

The corresponding boundary conditions are, 
• West, south and east boundary: 
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• North boundary: 

The physical system is therefore completely defined with five non-dimensional parameters, 
• the Reynolds, Prandtl and Grashof numbers: 

• the Darcy and Stefan numbers 

NUMERICAL RESULTS AND DISCUSSION 
In this study we analyze the effects of an increase of the free surface shear stress upon the stability 
of the flow inside the melted pool. For this thermal configuration (the heat source is located at 
the top of the melted pool), the thermocapillary convection is much more important than the 
natural convection. Therefore we have assumed that the effects of the Grashof number could 
be neglected. The results presented in Figures 2, 3, 4, 5 show the various flow patterns obtained 
for different free surface shear stress conditions (the values for the physical parameters are listed 
on Table 1, they represent the conditions for the surface remelting of an aluminium target). For 
an unsteady solution, the streamlines are represented for only one time (at the beginning of a 
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Table 1 Physical parameters: typical values (Aluminium 
target) 

Physical parameters 

Reynolds number Re 
Prandtl number Pr 
Grashof number Gr 
Stefan number Ste 
Liquid-solid specific heat ratio cl/cs 
Solid-liquid conductivity ratio kskl 
Solid-liquid density ratio ps/pl 
Dimensionless heat flux qd/kl∆t 

Typical values 

10-800 
0.01 
0 

∞ 
1.0 
2.4 
1.0 
5.0 

cycle for example if the solution is periodic). The streamlines show that an increase of the 
thermocapillary Reynolds number induces the development of two then four convective cells in 
the melted pool. From a qualitative point of view, the general structure of the flow is comparable 
with the results obtained for other neighbouring conditions12,13. The convective motions could 
be separated in two zones. The cells situated near the free surface are symmetric, the distance 
which separate each streamline indicate that the intensity of the velocity is higher near the free 
surface than at the bottom of the melted pool. This flow represents the direct contribution of 
the shear stress generated by the surface tension gradient at the free surface (thermocapillary 
convection). The cells situated at the bottom of the melted pool are generally asymmetric, for 
a periodic flow we have observed a periodic growth and decrease of these two cells. The intensity 
of this secondary flow increases with the Reynolds number. It results from the shear stress 
induced at the bottom of the melted pool by the thermocapillary convection cells. The symmetrical 
breaking can be observed for a Reynolds number greater than 100 (Figures 3, 4, 5), this flow 
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pattern is coupled with an oscillatory behaviour as can be seen in the temperature signals (Figures 
6, 8, 10, 12) and the corresponding power spectrum analysis (Figures 7, 9, 11, 13). 

For Re = 100, the flow in the melted pool has a mono-periodic behaviour (Figure 6), 
characterized by a fundamental frequency f = 0.05 followed by its different harmonics (Figure 
7). For a Re = 350, the flow dynamic exhibits a bi-periodic behaviour (Figures 8, 9) with two 
nearly equal frequencies f1 = 0.07 and f2 = 0.06 (f1/f2 = 7/6) which induce a modulation of the 
amplitude of the periodic signal. 

For higher values of Re, the temperature signal is also bi-periodic (Re = 550) with two different 
frequencies f1 = 0.085 and f2 = 0.0975 associated with the difference f = f2 — f1 and its harmonics 
(Figures 10, 11). For Re=800 the flow becomes again quasi-monoperiodic with a fundamental 
frequency f = 0.07 (Figures 12, 13). 

CONCLUSION 
As it has been shown by the previous results, the thermocapillary flow in a melted pool exhibits 
an unsteady behaviour characterized by periodic and quasi-periodic temperature signals. If we 
compare the average frequency f with the frequency fs constructed from the interaction time 
for a laser processing, it is clear that for a moving heat source, these oscillations could exist only 
for small values of scanning velocity. For an aluminium or a steel target the oscillation frequency 
in the melted pool f could vary from 10 to 20 Hz. This should be compared with the values of 
f s

=V s /d=1 Hz— 1 kHz (for a scanning velocity 1 mm/s< VS<1 m/s and a beam diameter 
d = 1mm). The formation of surface ripples observed during real laser applications (surface 
remelting, cladding, welding) could also be produced by other source of melted pool oscillations, 
induced by unsteady thermal coupling between the laser beam and the target (plasma formation, 
variation of the absorption coefficient). Nevertheless these results must be confirmed by 
experimental investigations, it is quite possible that in the real cases where the free surface can 
be deformed, the oscillations in the melted pool will be suppressed. 
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